SC - 1492 | Ordinary Differential Equations: Mathematical Tools for Physicists by Raza Tahir-Kheli

This textbook describes rules and procedures for the use of Differential Operators (DO) in Ordinary Differential Equations (ODE).

The book provides a detailed theoretical and numerical description of ODE. It presents a large variety of ODE and the chosen groups are used to solve a host of physical problems. Solving these problems is of interest primarily to students of science, such as physics, engineering, biology and chemistry.

Scientists are greatly assisted by using the DO obeying several simple algebraic rules. The book describes these rules and, to help the reader, the vocabulary and the definitions used throughout the text are provided. A thorough description of the relatively straightforward methodology for solving ODE is given. The book provides solutions to a large number of associated problems. ODE that are integrable, or those that have one of the two variables missing in any explicit form are also treated with solved problems. The physics and applicable mathematics are explained and many associated problems are analyzed and solved in detail. Numerical solutions are analyzed and the level of exactness obtained under various approximations is discussed in detail.

SC - 1492

Napomena:
- clanovima nase biblioteke omogucen je pristup resursima Svetske elektronske biblioteke (World electronic library - WELIB), na linku WELIBRS, gde se mogu pronaci knjige na srpskom jeziku. Napominjemo da mi samo ostvarujemo saradnju sa ovom bibliotekom, a nismo njen deo.

- u jednom postu se nalazi onoliko knjiga od istog autora koliko smo ih dobili u tom trenutku - ako zelite da vidite kompletan spisak svih postavljenih knjiga istog autora na celom blogu - mozete ih pronaci putem stranice sa spiskom autora ili putem taga sa imenom autora ispod naslova odgovarajuceg posta.


IDENTIFIKACIONI (ID) BROJEVI:

SC:
1-100__101-200__201-300

301-400__401-500__501-600

601-700__701-800__801-900


Related Posts:

0 comments:

Post a Comment

Comment form message