SC - 1075 | 3D Motion of Rigid Bodies: A Foundation for Robot Dynamics Analysis

3D Motion of Rigid Bodies: A Foundation for Robot Dynamics Analysis (Studies in Systems, Decision and Control) by Ernesto Olguín Díaz (Author)

This book offers an excellent complementary text for an advanced course on the modelling and dynamic analysis of multi-body mechanical systems, and provides readers an in-depth understanding of the modelling and control of robots.

While the Lagrangian formulation is well suited to multi-body systems, its physical meaning becomes paradoxically complicated for single rigid bodies. Yet the most advanced numerical methods rely on the physics of these single rigid bodies, whose dynamic is then given among multiple formulations by the set of the Newton–Euler equations in any of their multiple expression forms.

This book presents a range of simple tools to express in succinct form the dynamic equation for the motion of a single rigid body, either free motion (6-dimension), such as that of any free space navigation robot or constrained motion (less than 6-dimension), such as that of ground or surface vehicles. In the process, the book also explains the equivalences of (and differences between) the different formulations.

2019 | ISBN 978-3-030-04274-5 | ISBN 978-3-030-04275-2 | ID: SC - 1075

Napomena:
- clanovima nase biblioteke omogucen je pristup resursima Svetske elektronske biblioteke (World electronic library - WELIB), na linku WELIBRS, gde se mogu pronaci knjige na srpskom jeziku. Napominjemo da mi samo ostvarujemo saradnju sa ovom bibliotekom, a nismo njen deo.

- u jednom postu se nalazi onoliko knjiga od istog autora koliko smo ih dobili u tom trenutku - ako zelite da vidite kompletan spisak svih postavljenih knjiga istog autora na celom blogu - mozete ih pronaci putem stranice sa spiskom autora ili putem taga sa imenom autora ispod naslova odgovarajuceg posta.


IDENTIFIKACIONI (ID) BROJEVI:

SC:
1-100__101-200__201-300

301-400__401-500__501-600

601-700__701-800__801-900


0 comments:

Post a Comment

Comment form message