SC - 1308 | Understanding Machine Learning: From Theory to Algorithms
Shai Shalev-Shwartz, Shai Ben-David
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way.
The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks.
These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds.
Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.
ID: SC - 1308
Napomena:
- clanovima nase biblioteke omogucen je pristup resursima Svetske elektronske biblioteke (World electronic library - WELIB), na linku WELIBRS, gde se mogu pronaci knjige na srpskom jeziku. Napominjemo da mi samo ostvarujemo saradnju sa ovom bibliotekom, a nismo njen deo.
- u jednom postu se nalazi onoliko knjiga od istog autora koliko smo ih dobili u tom trenutku - ako zelite da vidite kompletan spisak svih postavljenih knjiga istog autora na celom blogu - mozete ih pronaci putem stranice sa spiskom autora ili putem taga sa imenom autora ispod naslova odgovarajuceg posta.
IDENTIFIKACIONI (ID) BROJEVI:
SC:
1-100__101-200__201-300
301-400__401-500__501-600
601-700__701-800__801-900
0 comments:
Post a Comment
Comment form message